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Abstract. In this paper, we address a global optimization approach to a water distribution network
design problem. Traditionally, a variety of local optimization schemes have been developed for such
problems, each new method discovering improved solutions for some standard test problems, with
no known lower bound to test the quality of the solutions obtained. A notable exception is a recent
paper by Eiger et al. (1994) who present a first global optimization approach for a loop and path-
based formulation of this problem, using a semi-infinite linear program to derive lower bounds. In
contrast, we employ an arc-based formulation that is linear except for certain complicating head-
loss constraints and develop a first global optimization scheme for this model. Our lower bounds are
derived through the design of a suitable Reformulation-Linearization Technique (RLT) that constructs
a tight linear programming relaxation for the given problem, and this is embedded within a branch-
and-bound algorithm. Convergence to an optimal solution is induced by coordinating this process
with an appropriate partitioning scheme. Some preliminary computational experience is provided
on two versions of a particular standard test problem for the literature for which an even further
improved solution is discovered, but one that is verified for the first time to be an optimum (within
$1 of cost), without any assumed a priori bounds on the flows. Two other variants of this problem
are also solved exactly for illustrative purposes and to provide researchers with additional test cases
having known optimal solutions. Suggestions on a more elaborate study involving several algorithmic
enhancements are presented for future research.
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1. Introduction

The problem of designing a reliable and cost effective Water Distribution Sys-
tem (WDS) is of considerable importance because of the strong dependence of
society on this natural resource. In the light of aging, deteriorating, water distribu-
tion systems in many cities throughout the world, this problem is becoming one
of increasing global importance. In a recent international conference, “Integrat-
ed Computer Applications for Water Supply and Distribution”, held in Leicester,
UK, September 7–9, 1993, practitioners, consultants, city engineers, and academic
researchers discussed and exposed the need for designing comprehensive mod-
els that integrate network reliability and redundancy issues, network expansion
and pipe sizing decisions, and multi-period economic analysis, all within a holis-
tic framework. A companion paper by Sherali et al. (1996a) discusses such an
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approach, and presents a single-stage network design model as a key subproblem
that needs to be solved within an overall design loop. This particular problem is
a hard, nonconvex, problem that has been widely researched over two decades
now, and the literature contains a host of local optimization schemes that have
yielded better and better approximate solutions for various standard test problems.
However, these methods lack even the determination of an adequate lower bound
that might assist in evaluating a local optimum. The present paper describes a
first global optimization algorithm to solve this particular model. (See below for
a discussion on one other recent global optimization procedure due to Eiger et al.
(1994), that has been applied to an alternative model formulation of this problem.)

The most general WDS problem is to modify and/or expand the design of an
existing network so that it is capable of satisfying the varied anticipated demand
patterns for water at required pressure levels, even while experiencing breakages
in the network. If the network is designed with low energy heads and using under-
sized or rough pipes in a skeletal fashion, then flow and/or pressure requirements
will not be met during certain demand peaks or under various pipe failure sce-
narios. On the other hand, if the energy sources and pipes are overdesigned, or
if there are too many redundant paths, then increased costs may lead to an inef-
ficient solution. Therefore, the problem at hand requires a cost effective network
design and replacement strategy that satisfies stated hydraulic requirements under
various likely demand patterns and failure modes. As mentioned above, Sherali
et al. (1996a) have recently developed an integrated pipe-reliability-and-cost, and
network-optimization approach that analyzes pipe reliability and annualized main-
tenance costs, along with replacement recommendations, as well as the design and
sizing of expanded and replaced sections of the network. The core driver in such
a design approach is a single-stage network optimization model that determines a
least cost pipe sizing (diameters and lengths), and energy requirements (elevated
source head levels), for a fixed demand pattern. The problem formulated is a non-
linear program to minimize the cost of designing pipes and elevating energy heads
of sources subject to satisfying hydraulic flow and pressure requirements at the
different nodes of the distribution network. Pipe links are limited to be composed
of existing pipe segments in the network, and new pipe segments selected from
commercially available pipe diameters. Existing pipe links may be retained intact,
or may be replaced either partially (segment-wise) or completely. This problem
turns out to be a hard nonconvex optimization problem that has many local optima,
different from a globally minimum cost design, and has hence proven to be difficult
to solve.

One of the first novel optimization approaches to solve this problem was due
to Alperovits and Shamir (1977) who proposed the popular (successive) linear
programming gradient (LPG) method. Since for a fixed set of flows, the problem
reduces to a linear program in the pressure heads and pipe lengths, the authors
suggest a procedure that projects the problem onto the space of the flow variables,
and heuristically adjust these variables based on variations in the optimal value
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of the associated linear programming problem. Quindry et al. (1979) showed that
Alperovits and Shamir had missed certain terms in their gradient expressions.
However, the inclusion of these terms rendered the procedure ineffective for large-
scale problems. Later, Quindry et al. (1981), Fujiwara et al. (1987), Kessler and
Shamir (1989), and Fujiwara and Khang (1990) proposed alternative derivations
of the linear programming based gradient expressions along with other algorithmic
enhancements to improve the computational efficiency of the LPG approach.

Lansey and Mays (1985) simplified the solution of this nonlinear single-stage
model by incorporating a network simulator within the optimization model, and
by applying general reduced-gradient and optimal control theory concepts. On the
other hand, Gessler (1985) and Loubser and Gessler (1993) simplified this problem
by using an enumeration approach that examines all possible combinations of
decision options, testing each for feasibility and cost. The obvious combinatorial
explosion of such an approach is somewhat mitigated by grouping together similar
classes of pipes and by pruning infeasible or inferior combinations that might be
evident from among the candidate list of solutions.

An alternative decomposition/projection algorithm was proposed by Sherali and
Smith (1993), where the problem is projected onto the space of the network design
variables (pipe lengths of various diameters and source elevation heads), and an
auxiliary convex cost network flow subproblem of the type analyzed by Collins et
al. (1978) is used to guide the variations in the design variables.

Several other refinements have been proposed in the design of water dis-
tribution systems. Morgan and Goulter (1985) suggest an enhancement in the
process of designing or expanding a looped WDS by treating multiple demand
loads and pipe failure scenarios, along with network connectivity issues in order
to achieve adequate hydraulic redundancy. Hobbs and Hepenstal (1989) suggest
another enhancement based on using Monte-Carlo simulation techniques to assess
the network performance under various random operating conditions within the
design process. Other papers attempt to integrate reliability issues more intimately
within the network design process in an iterative, multi-stage process. Examples
of such approaches include the works of Rowell and Barnes (1982), Loganathan
et al. (1990), and Fujiwara and Tung (1991). Walski (1984, 1985) also provides a
discussion on related real-world considerations in the design of water distribution
systems, and Sherali et al. (1996a) discuss how the various models developed in
the literature might be integrated to jointly address several such issues.

All of the above procedures employ heuristics for the single-stage network opti-
mization problem that, at best, might converge to locally optimal solutions. A first
global optimization approach has been recently proposed by Eiger et al. (1994).
This approach is applied to an alternative formulation of the single-stage design
problem than the one considered herein, in that it enforces the hydraulic consistency
requirements via an enumeration of all possible basic loops and source-to-demand
node paths in the network, as opposed to employing a link-wise formulation of
these constraints. A branch-and-bound algorithm is proposed based on partitioning
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the hyperrectangle restricting the flows into several subrectangles (a precise scheme
is unspecified). At each node of the branch-and-bound tree, a subgradient-based
heuristic is applied to determine an upper bound via the nonsmooth, nonconvex,
projection of the problem onto the space of the flow variables. A different relaxed,
duality-based, linear programming formulation is used to compute lower bounds.
Although some promising results are presented, the procedure appears to experi-
ence convergence difficulties which necessitates the use of highly restrictive initial
bounding hyperrectangles. Sherali et al. (1996b) provide some insights into the
derivation of Eiger et al.’s lower bound, exhibiting why it might tend to be weak,
and suggesting enhancements to tighten this bound.

The present paper addresses a different global optimization approach applied
to an alternative formulation of the WDS design problem. The proposed algo-
rithm is also a branch-and-bound procedure, but one that uses a Reformulation-
Linearization Technique (RLT) in order to compute linear programming based
lower bounds, and coordinates this with a suitable partitioning scheme in order to
induce convergence to a global optimum. Upper bounds are computed by applying
a simple heuristic to the lower bounding solution. We apply this algorithm to two
variants of the classic Alperovits and Shamir (1977) test problem that have been
considered in the literature, and discover improved solutions over the best known
solutions for these problems, verifying the true optimality of these solutions for
the first time ever to within a $1 difference between the global lower and upper
bounds, without assuming any a priori bounds on the flows. Two other variants of
this problem are also solved to exact global optimality to illustrate the performance
of the algorithm and to provide additional test cases. The purpose of this paper,
therefore, is to present to the global optimization community a particular model
for this important problem of designing water distribution systems, to describe the
principal framework of an approach to solve this model, and to provide some test
cases with known optimal solutions, without having assumed any a priori bounds
on the flow variables. Although we demonstrate some encouraging results as indi-
cated above, we also present several algorithmic refinements and enhancements
that need to be made in order to make this algorithm practical and effective for
large-scale problems. Such refinements along with more extensive computations
will be pursued in future research.

The remainder of this paper is organized as follows. Section 2 presents the mod-
el formulation and Section 3 discusses the design of an RLT-based lower bounding
the problem and presents its fundamental theoretical properties. This construct
is embedded within an infinitely convergent branch-and-bound algorithm that is
described in Section 4. Section 5 presents our preliminary computational experi-
ence, and Section 6 concludes the paper with a discussion on possible algorithmic
enhancements.
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2. Model Formulation

The single-stage pipe network design problem seeks to determine a least cost design
of a given network configuration in order to satisfy a specified anticipated demand
at acceptable pressure head levels. The network requires that various links connect-
ing pairs of designated nodes be comprised of possibly different segments, each
segment being a collection of standard, commercially available, uniform pipe sec-
tions having specific values of diameter, roughness (Hazen–Williams) coefficient,
and associated cost. Each link may have existing segments of specified lengths and
age that are to be retained in the design. (Sherali et al. (1996a) describe an analytical
technique for a priori making the decision to retain or replace existing pipe seg-
ments.) Furthermore, the design requires the determination of any additional head
elevation (for example, via pumps) that should be provided, at an accompanying
cost, at the reservoirs/sources nodes. This additional head (denoted by the decision
variables Hsi below) might be required depending on the available reservoir head,
the required pressure heads at the demand nodes, and the frictional head losses in
the connecting pipes. The design should be such that it is capable of sustaining
flows that satisfy supply and demand flow restrictions at the various network nodes,
and such that the resulting pressure heads due to frictional head loss relationship
is a nonlinear, nonconvex, function of the flow, the pipe length, and the diameter,
and is the feature that renders this problem hard to solve.

To present a mathematical model for this problem, consider the following
notation. (In general, for any subscripted notation defined below, the same symbol
without subscripts will be used to denote a vector of the corresponding entities.)

N = f1; . . . ; ng: set of nodes in the network.

S � N , D � N � S: set of source and demand nodes, respectively.

bi: net water supply or demand rate (m3/hr) correspond-
ing to node i 2 N . (By convention, this is taken as
positive for source nodes and negative for demand
nodes. Also,

P
i2N bi is assumed to be nonnegative.)

Ei: ground elevation (m) of node i.

Hi: decision variable representing the established head
(m) at node i, above the level Ei.

Fi: available fixed energy head (m) at source node i 2
S.

Hsi: decision variable representing the additional head
elevation (m) provided at source node i 2 S.

HU
si : a practical upper bound imposed on the head eleva-

tion Hsi for i 2 S.
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csi: annualized cost per unit energy head ($/m/yr) pro-
vided at source node i 2 S.

[HiL;HiU ]: acceptable interval for the energy head (m) at demand
node i 2 D.

A: set of directed arcs or links (i; j) and (j; i) for each
connected pair of nodes i and j in the given network
configuration. (In practice, we can assume that only
unidirectional links are incident at source nodes.)

Qij: decision variable representing the flow rate (m3/hr)
on link (i; j) 2 A.

QL
ij; Q

U
ij : specified lower and upper bounds onQij , respective-

ly, based on some preprocessing logical or optimality
analysis (see Remark 2 below).


 = fQ : QL � Q � QUg: Hyperrectangle restricting the flows. (Each branch-
and-bound node will principally differ in the speci-
fication of 
.)

Lij(= Lji): pipe length (m) corresponding to link (i; j) (or
(j; i)) 2 A.

fdk; k = 1; . . . ;Kg: set of standard available pipe diameters (inches).

Xijk: length (m) of existing segments of link (i; j) 2 A

having a diameter dk that is selected for continued
use. (Note that Xijk � Xjik.)

xijk: decision variable representing the length (m) of a
new segment of link (i; j) 2 A that is to be construct-
ed, having a diameter dk. (Note that xijk � xjik and
so, only one of each pair of variables should be used
in the formulation by appropriate substitution.)

cijk: annualized construction and maintenance cost per
unit length ($/m/yr) of link (i; j) 2 A that has a
diameter dk.

CHWN : assumed Hazen–Williams coefficient for new pipes
for computing frictional head losses.

CHWE(i;j;k): assumed Hazen–Williams coefficient for the existing
pipe segment of length Xijk, corresponding to link
(i; j) 2 A of diameter dk.

�ij(Qij; xij:;Xij:) = (1:52)104Q1:852
ij

KX
k=1
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�

"
xijk

d4:87
k C1:852

HWN

+
Xijk

d4:87
k C1:852

HWE(i;j;k)

#
: (1a)

pressure head loss (m) due to friction in link (i; j),
where xij: � (xijk; k = 1; . . . ;K) and Xij: �

(Xijk; k = 1; . . . ;K).

REMARK 1 (Frictional Head Loss Relationship). The frictional head loss expres-
sion for �ij(Qij ; xij ;Xij:) given in (1a) is the one that is most commonly used in
the literature, as well as in all standard test problems, and corresponds to smooth
flow conditions (Walski, 1984). However, Walski (1984) also suggests an alterna-
tive expression that corresponds to rough flow conditions that has an exponent of
2 for the flow variable Qij . This expression is given as follows, where ~Qij is the
(fixed) flow at which the Hazen–Williams coefficient was measured.

�ij(Qij; xij:;Xij:) = (1:52)104 Q2
ij

~Q0:148
ij

KX
k=1

�

"
xijk

d4:87
k C1:852

HWN

+
Xijk

d4:87
k C1:852

HWE(i;j;k)

#
(1b)

In either case, for developing our model and algorithm, we will denote (1a) or (1b)
as given by (1c) below, for some exponent e on the flow variable Qij , and we
will indicate which specific expression is being used in our computational results
presented later in Section 5.

�ij(Qij; xij:;Xij:) = Qe
ij`(x;X)ij : (1c)

E

The network optimization problem (NOP), restricted on 
, can then be formulated
as follows:

NOP (
) : Minimize
X

(i;j)2A
i<j

KX
k=1

cijkxijk +
X
i2S

csiHsi (2a)

subject to
X

j:(i;j)2A

Qij �
X

j:(j;i)2A

Qji � bi for each i 2 S

(2b)X
j:(i;j)2A

Qij �
X

j:(j;i)2A

Qji = bi for each i 2 D

(2c)



114 HANIF D. SHERALI AND ERNEST P. SMITH

(Hi +Ei)�(Hj+Ej)=

=

�
�ij(Qij ; xij:;Xij:) if Qij > 0
� 0 if Qij = 0

for each (i; j)2A (2d)

Hi +Ei � Fi +Hsi for each i 2 S (2e)

HiL � Hi +Ei � HiU for each i 2 D (2f)

KX
k=1

(xijk +Xijk) = Lij for each (i; j) 2 A; i < j (2g)

QL
ij � Qij � QU

ij 8(i; j) 2 A; 0 � Hsi � HU
si 8i 2 S;

xijk � 0; 8(i; j) 2 A; i < j; k = 1; . . . ;K: (2h)

The objective function, Equation (2a), in the above model denotes the total
annualized construction plus maintenance costs. The constraints (2b) and (2c)
enforce the conservation or continuity of flow at each node in the network. The
constraints (2d) represent the conservation of energy or head loss constraints for
each pipe in the direction of positive flow. Note that these constraints imply that
Hi + Ei > Hj + Ej whenever Qij > 0, and so, we will never have both Qij

and Qji positive in any feasible solution. The constraints (2e) represent the head
available at each source node i 2 S, constraints (2f) represent bounds on the head
levels enforced at each demand note, and constraints (2g) establish the appropriate
constructed pipe link lengths. Finally, constraints (2h) represent logical or bound
restrictions.

REMARK 2 (Determining Bounds on Flows). Note that the bounds on the flows
can be determined by practical considerations based on the network configuration
and the supply and demand rate information. Although any implied bounds on
the flow variables would suffice in theory, from the viewpoint of computational
effectiveness, it is preferable to ascertain as tight bounds as possible using some
preprocessing of data or optimality considerations, perhaps also identifying links
whose flow direction is evident by the nature of the particular problem. (Also,
see Eiger et al. (1994, p. 2641) for further comments on this issue.) In contrast
with previous approaches, we determine provably valid initial bounds on the flow
variables for use in our model, without making any a priori (heuristic) assumption
on these values. First, we compute lower and upper bounds on the flows based
on a simple logical analysis using supplies, demands, and continuity of flow over
the network. Next, using a relaxation of the constraints (we employed the lin-
ear programming RLT relaxation proposed below), we sequentially minimize and
maximize the flow in each link subject to this relaxed set of constraints, but with the
additional constraint that the objective function (2a) be less than or equal to the best
known incumbent value. (This value can be initialized at some implied maximum
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possible level to begin with, and can be updated whenever a new incumbent value
is discovered in this process.) Note that although the revised bounds deduced for
each link in this manner can be used to accordingly tighten the relaxation before
solving the next pair of problems for a subsequent link, we simply performed a
single independent pass through all the links that defineA in the problem in order to
determine the initial set of bounds QL and QU to be used in formulating (2h). E

FORMULATION OF HEAD-LOSS CONSTRAINTS (2d)

In order to mathematically restate constraints (2d), let us partition the set of arcs
A into the following three disjoint subsets, depending on an admissible set of
flow bounding restrictions designated by 
. (This will hold for any node in the
developed branch-and-bound enumeration tree described later in Section 4.)

Az = f(i; j) 2 A : QL
ij = QU

ij = 0g. These arcs are
designated to carry no flow and can be eliminated
from the network.

A1 = f(i; j) 2 A : QU
ij > 0 and (j; i) 2 Azg. These

arcs correspond to unidirectional links for which
the possible flow direction has been determined.

A2 = f(i; j) and (j; i) 2 A : QL
ij = 0; QU

ij > 0, and
QL
ji = 0; QU

ji > 0g. These arcs correspond to bidi-
rectional links for which the flow direction has not
as yet been determined.

AF = A1 [A2 � A�Az = set of network arcs that have a possibility of nonze-
ro flow.

Note that A can essentially be replaced by AF in the model NOP(
). Now, noting
the form of �ij in (1c), we can replace (2d) by the following set of equivalent
inequalities for all (i; j) 2 AF .

(Hi +Ei)� (Hj +Ej) = [QU
ij]

e`(x;X)ij 8(i; j) 2 A1 3 Q
L
ij = QU

ij (3a)

(Hi +Ei)� (Hj +Ej) = Qe
ij`(x;X)ij 8(i; j) 2 A1 3 Q

L
ij < QU

ij (3b)

f(Hi +Ei)� (Hj +Ej)g � Qe
ij`(x;X)ij 8(i; j) 2 A2; and (3c)

Qijf(Hi +Ei)� (Hj +Ej)g � Q
(e+1)
ij `(x;X)ij 8(i; j) 2 A2: (3d)

It should be evident from the formulation of (3a, b) versus (3c, d) that the
representation of constraints (2d) is greatly simplified once the direction of flow on
the network links is determined. As will be seen in the next section, the knowledge
of flow directions can also be exploited while generating the lower bounding
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problems in order to derive potentially tighter representations. We now proceed
to develop this linear programming relaxation of problem NOP(
) that we will
employ as the principal component in our proposed branch-and-boundalgorithm.

3. Design of a Reformulation-Linearization Technique Based Relaxation

In this section, we develop a relaxation based on the Reformulation-Linearization
Technique (RLT) as propounded by Sherali and Tuncbilek (1992) and by Sher-
ali (1996) for general polynomial programming problems, by specializing this
technique, with some modifications, for Problem NOP(
). The resulting linear
programming relaxation provides an outer-approximation to the underlying non-
convex problem. This approximation is embedded within a branch-and-bound
search procedure in the following section, that is proven to converge to a global
"-optimal solution in finite time, for any specified accuracy tolerance " > 0.

The fundamental idea behind the RLT strategy is to linearize nonlinear poly-
nomial terms by substituting linear variables in their stead. However, in order to
establish the required relationships between the nonlinear and the linearized terms,
various valid or implied constraints need to be generated and added to the resulting
relaxed linear program, RLT[NOP(
)]. These RLT constraints, as they are called,
also serve to tighten the linear programming relaxation, and their choice and
design constitutes the principal step of applying the Reformulation-Linearization
Technique. In addition, the RLT design must be coordinated with an appropriate
partitioning scheme that is applied to the variable bounding intervals. This must be
done in a manner so that as these intervals are further and further restricted, the cor-
responding relaxed linear programs become tighter and tighter, inducing an infinite
convergence process to an optimal solution to the original nonlinear program NOP,
without the intervals necessarily approaching zero. In other words, we must ensure
that along any infinite branch of the accompanying branch-and-bound scheme, any
accumulation point of the corresponding sequence of solutions generated for the
linear programming relaxations solves Problem NOP.

In our particular implementation of RLT, in order to handle general rational
exponents e on the flow variables Qij in (1c) as in Sherali (1996), we will relax
the constraints by using concave envelopes (chord approximations) and first-order
tangential approximations to obtain upper and lower bounding affine functions for
the convex functions Qe

ij or Q(e+1)
ij in (3). This will yield valid inequalities having

integer exponents to which RLT can be suitably applied. First in (3b) and (3c),
since Qe

ij is a convex function defined over [QL
ij ; Q

U
ij], it is bounded above by the

affine chord gij(Qij) on this interval, which happens to define its concave envelope
over this interval. Hence, we get, noting that AF � A1 [A2,

Qe
ij � gij(Qij) �

[QU
ij ]

e(Qij �QL
ij) + [QL

ij]
e(QU

ij �Qij)

(QU
ij �QL

ij)

8(i; j) 2 AF 3 Q
L
ij < QU

ij: (4a)
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Furthermore, in (3b), since the convex function Qe
ij lies above the first-order

tangential affine approximation fij(Qij ; �Qij) defined at any point �Qij � [QL
ij ; Q

U
ij],

we get

Qe
ij � fij(Qij; �Qij) � [e �Q

(e�1)
ij ]Qij � (e� 1) �Qe

ij

8(i; j) 2 A1 3 Q
L
ij < QU

ij: (4b)

Symmetric to (4b), for the convex function Q(e+1)
ij in (3d), we obtain

Q
(e+1)
ij � fij(Qij ; �Qij) � [(e+ 1) �Qe

ij ]Qij � e �Q
(e+1)
ij 8(i; j) 2 A2: (4c)

Using (4a) in (3b) and (3c), using (4b) in (3b), and using (4c) in (3d), we
relax the constraints (3) to obtain the following set of restrictions. Here, note
that in applying (4b) and (4c), we have employed �Qij as six particular convex
combinations ofQL

ij andQU
ij , including the end points, and that fij is given by (4b)

and (4c) for (i; j) 2 A1 and A2, respectively.

(Hi +Ei)� (Hj +Ej) = [QU
ij]

e`(x;X)ij 8(i; j) 2 A1 3 Q
L
ij = QU

ij (5a)

f(Hi +Ei)� (Hj +Ej)g � gij(Qij)`(x;X)ij

8(i; j)2AF 3Q
L
ij<QU

ij (5b)

and for each �Qij = �QL
ij + (1� �)QU

ij for � = 0, 0.25, 0.5, 0.75, 0.875, and 1.0,
we have

f(Hi +Ei)� (Hj +Ej)g � fij(Qij; �Qij)`(x;X)ij

8(i; j) 2 A1 3 Q
L
ij < QU

ij (5c)

and

Qijf(Hi+Ei)�(Hj+Ej)g�fij(Qij ; �Qij)`(x;X)ij 8(i; j)2A2: (5d)

The RLT process then operates in the following two phases.

REFORMULATION PHASE

In this phase, we add several valid or implied nonlinear constraints to the program
NOP(
) to capture useful relationships between the inherent polynomial terms
and the linear variables that will be used to represent them, while relaxing (2d) to
the constraints (5) stated above. These new restrictions are formed by generating
suitable product constraints that are implied by the original problem constraints,
where the product operation is designated by (*) below.
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The resulting reformulated problem, denoted RNOP(
) is summarized below:

RNOP(
) : Minimize [Objective (2a)] (6a)

subject to (2b), (2c) (6b)

(5a), (5b), (5c), (5d) (6c)

(2e), (2f), (2g) (6d)

(2h) (6e)

along with the RLT constraints:

(2g) �Qij 8(i; j) 2 AF (6f)

[(2f) written for node i] �Qij and [(2f) written for node j] �Qij

8(i; j) 2 A2 (6g)

[(2f) written for node i] �[QU
ij �Qij ] and

[(2f) written for node j] �[QU
ij �Qij] 8(i; j) 2 A2 (6h)

xijk(Qij �QL
ij) � 0 and xijk(Q

U
ij �Qij) � 0 8(i; j) 2 AF ; 8k: (6i)

REMARK 3. Note that the reformulation RNOP(
) could possibly benefit further
by the generation of RLT constraints of the type, for example, (2c) * Hi 8i 2 D

for which some of the incident arcs are in A2, along with (6g) and (6h) being then
written for all (i; j) 2 AF that are involved in such products. The cost-benefit
analysis of including these and other higher order product constraints in RNOP(
)
are open to computational investigations. E

LINEARIZATION PHASE

In the RLT linearization phase, a single new variable is simply substituted in
RNOP(
) for each quadratic polynomial term that involves the product of some pair
of the original problem variables. Specifically, we make the following substitutions
of new variables to represent the corresponding nonlinear terms.

h+ij = QijHi and h�ij = QijHj 8(i; j) 2 A2; and

�ijk = Qijxijk 8(i; j) 2 AF 8k; (7)

where xijk � xjik. This produces a linear programming relaxation RLT[NOP(
)],
say. Note that lower and upper bounds on the new variables that are implied by the
polynomial terms they represent, along with bounds on the original variables, can
be included for algorithmic purposes in solving RLT[NOP(
)]. Hence, solutions
that are feasible to the original problem are always feasible to the linear relaxation,
but not vice versa. Therefore, RLT[NOP(
)] yields valid lower bounds.
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REMARK 4. Note that the h+ij and h�ij variables are only included in the formu-
lation when the flow direction is not known; that is, when (i; j) 2 A2 for which
constraints (5d) become necessary. The remaining linearized variables� are includ-
ed whenever there is a possibility of a positive flow for the corresponding arc; that
is, whenever (i; j) 2 AF . Notice also that if the relationships in (7) hold as an
equality for all of the RLT variables, and the flows Qij coincide with some �Qij

used in (4) and (5) for each (i; j) 2 AF , then the LP relaxation solves the original
problem exactly. E

The following two results summarize the key properties of RLT[NOP)
)]. The
first of these results is evident from the foregoing discussion.

PROPOSITION 1. For any hyperrectangle 
 bounding the flows Qij , we have
�[RLT[NOP(
)]] � �[NOP(
)], where �[�] denotes the objective function value
at optimality for a given problem [�]. Moreover, if ( �Q; �H; �x; �h+; �h�; ��) solves
RLT[NOP(
)], and if ( �Q; �H; �x) is feasible to NOP(
), then ( �Q; �H; �x) solves
NOP(
). E

Proposition 2 below shows that if at any feasible solution to RLT[NOP(
)], some
flow valueQij for a particular arc (i; j) at a branch-and-bound node is at one of its
bounds in the
-hyperrectangle defining the node, then the relationships in (7) hold
true for that variable. This property is essential in establishing the convergence of
the proposed branch-and-bound algorithm.

PROPOSITION 2. Let (Q;H; x; h+; h�; �) be any feasible solution to
RLT[NOP(
)] for some defined hyperrectangle 
, and suppose that an arc flow
Qij satisfies Qij = QL

ij or Qij = QU
ij in this solution. Then the RLT-variable

relationships in (7) hold true for all the variables that are associated with Qij in
this solution.

Proof. Suppose that Qij = QL
ij in a feasible solution to RLT[NOP(
)]. In what

follows, let us denote by [�]L the linearized expression obtained upon substituting
(7) into a corresponding nonlinear expression [�] appearing in Problem RNOP(
).

First, let us show that h+ij = QL
ijHi and that h�ij = QL

ijHj . Recall that h+ij and
h�ij exist only for (i; j) 2 A2, for which QL

ij = 0. Hence, we need to show that
h+ij = h�ij = 0 in this case. The first constraint in (6g) yields the pair of inequalities
[(Hi +Ei �HiL)Qij ]L � 0 and [(HiU �Hi �Ei)Qij ]L � 0, which respectively
simplify to h+ij � Qij(HiL � Ei) = 0 and h+ij � Qij(HiU � Ei) = 0 when
Qij = QL

ij = 0. This implies that h+ij = 0. Similarly, using the second constraint
in (6g), we obtain h�ij = 0.

Now, let us show that �ijk = Qijxijk � QL
ijxijk 8k. The first constraint in

(6i) yields upon linearization that

�ijk � xijkQ
L
ij 8k: (8a)
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Furthermore, (6f) gives
P

k[�ijk +XijkQij ] = LijQij . Hence, when Qij = QL
ij ,

using this equation along with (2g) itself (multiplied by the constant QL
ij) givesX

k

(�ijk +XijkQ
L
ij) = LijQ

L
ij

=
X
k

(xijkQ
L
ij +XijkQ

L
ij); i.e.;

X
k

�ijk =
X
k

xijkQ
L
ij : (8b)

Equations (8a) and (8b) together imply that we must have

�ijk = xijkQ
L
ij 8k: (9)

The arguments for the case Qij = QU
ij follow identically, and this completes

the proof. E

REMARK 5 (Size of Problem RLT[NOP(
)] and its Solution). Problem
RLT[NOP(
)] has 2jSj + jDj + (9 + 2K)jA1j + (17 + 2K)jA2j structural con-
straints, aside from simple lower and upper bounds on the variables, and has
2jSj + jDj + (1 + 2K)jA1j + (3 + 1:5K)jA2j variables. (Here, we have used
the fact that jAF j = jA1j + jA2j and that jAF ; i < jj = jA1j + 0:5jA2j:) Note
that the size of the problem is more influenced by the number of links that do not
have their flow directions determined, because of the additional restrictions (6g)
and (6h), and the additional variables h+ij and h�ij in this case. Moreover, due to
the RLT relaxations used for (5), a potentially tighter representation results when
flow directions are determined. Assuming for simplicity that all the original links
in the network are undirected, then in the worst case, when none of the links have
their flow directions determined, we have, jA1j = 0 and jA2j = jAj. Hence, the
number of constraints is 2jSj+ jDj+ (17 + 2K)jAj, and the number of variables
is 2jSj + jDj + (3 + 1:5K)jAj. In the best case, when all the links have their
flow directions determined, jA1j = 0:5jAj and jA2j = 0, and the number of con-
straints is then given by 2jSj + jDj+ (4:5 +K)jAj, and the number of variables
is 2jSj+ jDj+ (0:5 +K)jAj.

For example, in the test problem of Section 5, where jSj = 1, jDj = 6, jAj = 14,
and K = 5, we obtain 386 constraints and 155 variables in the worst case. In the
best case, we obtain 141 constraints and 85 variables. About 63% of the variables
are eliminated by resolving the directions of flow. E

4. Branch-and-Bound Algorithm

We now embed RLT[NOP(
)] in a branch-and-bound procedure to solve Prob-
lem NOP globally to within any specified " > 0, or percentage, tolerance. The
discussion in this section is based on the development in Sherali and Tuncbilek
(1992) and Sherali (1996) where general polynomial programs are addressed, but
differs in our treatment of constraints (2d) via the representation given in (5), and
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also differs in the critical design of a partitioning strategy. (Also, see Horst et al.
(1995) for a general discussion on branch-and-bound techniques.) Our approach
is to perform suitable rectangular partitions on the subset of variables defined by
the hyperrectangle 
 = fQ : QL � Q � QUg. Let the hyperrectangle associated
with node t of the branch-and-bound enumeration tree be denoted by 
t, where

t � fQ : QLt � Q � QUtg: Then �[RLT[NOP (
t)]] yields a lower bound
for the node subproblem NOP(
t). (Note that we will continue to assume that
if QL

ij = QU
ij for any (i; j) 2 A, then Qij is fixed at this common value in the

problem and is no longer treated as a variable in the computations.) In particu-
lar, if ( �Q; �H; �x; �h+; �h�; ��) solves RLT[NOP(
t)] and the corresponding solution
( �Q; �H; �x) is feasible to NOP(
t), then by Proposition 1, ( �Q; �H; �x) solves NOP(
t),
and being feasible to NOP(
), the value �[NOP(
t)]� �[RLT[NOP(
t)]] provides
an upper bound for Problem NOP(
). Hence, we have a candidate for possi-
bly updating the incumbent solution (Q�;H�; x�) and its value �� for Problem
NOP(
).

In case ( �Q; �H; �x) is not feasible to NOP(
), we can possibly determine an
improved upper bound �� for NOP(
) by applying some heuristic to the lower
bounding solution. For example, starting from �Q, we can apply the heuristic of
Alperovits and Shamir (1977), or any other relatively quick and effective local
optimization scheme cited in Section 1. (Note that although these heuristics can be
complex and involve nondifferentiable optimization subproblems [see Eiger et al.
(1994) for example], any simplified version of such heuristics can be run for only a
restricted number of iterations in this context.) For our computations, we used the
following simple heuristic. Given �x and �Q, we examine each link and determine
for this link a (continuous) diameter segment that would yield the same hydraulic
head loss as in the current solution. From this, we can then determine (up to) two
adjacent standard pipe diameters that contain this computed continuous diameter
value in between them, along with the lengths of the corresponding pipe segments
to yield the same head loss. Let x̂ represent the obtained network design. Fixing
x = x̂, we then use the method recommended by Walski (1984) to solve a system
of nonlinear equations that yields the accompanying flows and pressure heads. If
this is feasible, then we update the incumbent value. Otherwise, if the resulting
solution is infeasible, but its objective value is lesser than the incumbent value by
some amount�, we increase the cost of the design, in turn, by 50%, 70%, and then
90% of this difference � by proportionately increasing the effective pipe diameter
of each link to the value that increases the cost by this percentage amount, thereby
finding a revised network design x̂ to which Walski’s procedure is applied. Since
this successively costlier design has large diameter pipes that result in smaller head
losses, we have an increasingly greater likelyhood of finding an improved feasible
solution.

Now, if �[RLT[NOP(
t)]]� ��, we can fathom node t. Hence, at any stage r
of the branch-and-bound algorithm, we have a set of non-fathomed or active nodes
denoted by Tr. Given this, we select an active node t� in Tr that has the least
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objective function value for the corresponding relaxation RLT[NOP(�)] (breaking
ties arbitrarily). That is, we select t� 2 argminf�[RLT[NOP(
t)]] : t 2 Trg.
Next, we partition the hyperrectangle associated with this node t� into two sub-
hyperrectangles based on the following branching variable selection strategy. The
design of this strategy is not only important from the viewpoint of computational
efficiency, but is also critical in ensuring the theoretical convergence of the overall
procedure. In this strategy, given ( �Q; �H; �x) that has been obtained as (part of) an
optimal solution to RLT[NOP(
t)], we define

�ij = (QUt
ij �QLt

ij )minf �Qij �QLt
ij ; Q

Ut
ij �

�Qijg 8(i; j) 2 AF : (10a)

The branching variable choice is then given by

(p; q) = argmax
(i;j)2AF

f�ijg; (10b)

and we accordingly partition the current interval [QLt
pq ; Q

Ut
pq ] for Qpq into the subin-

tervals

[QLt
pq ;

�Qpq] and [ �Qpq; Q
Ut
pq ]; (10c)

noting that QLt
pq < �Qpq < QUt

pq when �pq > 0. The following lemma asserts a
simple, but crucial, fact that will be useful in establishing the convergence of the
proposed algorithm, and motivates the design of the above branching variable
selection strategy.

PROPOSITION 3. With (p; q) selected as in (10), if �pq = 0, then the (partial)
optimum solution ( �Q; �H; �x) to RLT[NOP(
t)] solves NOP(
t), yielding the same
objective value. Hence, the corresponding node t can be fathomed, after updating
the incumbent feasible solution, if necessary.

Proof. Since �pq = 0, (10) implies that �Qij = QLt
ij or �Qij = QUt

ij (or both) for
each (i; j) 2 AF . By Proposition 2, the relationship (7) holds true for the solution
of problem RLT[NOP(
t)]. Moreover, from (4) and (5), since the approximations
to (2d) hold exactly at the end points of the flow intervals, the solution ( �Q; �H; �x)
satisfies the constraints (2d) 8(i; j) 2 A for Problem NOP(
t). All the remaining
constraints in NOP(
t) are satisfied explicitly by inclusion in the formulation of
Problem RLT[NOP(
t)]. Hence, the optimal solution to RLT[NOP(
t)] is feasible
to NOP(
t) and, by Proposition 1, solves NOP(
t). E

A formal statement of the proposed branch-and-bound algorithm is given below.

Branch-and-Bound Algorithm

Initialization Step. Initialize the incumbent solution (Q�;H�; x�) = ; and �� =1.
(Practically, if some feasible solution is known, this could be used as an initial
solution.) Apply the procedure of Remark 2 to determine valid bounds on the
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flow variables, along with a possibly improved incumbent solution (Q�;H�; x�)
of objective value ��. Set the stage counter r = 1, and let T1 = f1g. Denote

rt = 
1;1 � 
 as the initial hyperrectangle that defines Problem NOP(
).
Solve RLT[NOP(
1;1)] to obtain an optimal solution of objective function value
LB1;1 � �[RLT[NOP(
)]] and determine a branching variable by using Equation
(10). If �pq = 0, or if �� = LB1;1, then stop; by Proposition 3, this solution solves
the original Problem NOP(
). Otherwise, apply a suitable heuristic (as described
above) to the optimum obtained for Problem RLT[NOP(
t)] in order to possibly
improve the incumbent solution. Set t� = 1, and proceed to Step 1.

Step 1. Partitioning Step (Stage r, r � 1). Having the active node (r; t�) to be parti-
tioned, and given the choice (p; q) for the branching variable as determined by (10),
partition this node into two sub-nodes associated with the two sub-hyperrectangles

r;t1 and 
r;t2 that are identical to 
r;t, except that the two respective interval
restrictions on Qpq are given by (10c) corresponding to t = t� at stage r. (See
Remark 6 below for a pertinent suggestion on this partitioning strategy.) Update
Tr  (Tr � ft

�g) [ ft1; t2g, and proceed to Step 2.

Step 2. Bounding Step. Solve the linear program RLT[NOP(
r;t1)]. If this problem
is infeasible, then fathom the corresponding node at Step 3. Otherwise, find an opti-
mal solution, denote its objective function value byLBr;t1 = �[RLT[NOP(
r;t1)]],
and using this optimal solution in (10), determine the corresponding branching vari-
able index (p; q). If �pq = 0, then by Proposition 3, this solution solves the node
subproblem NOP(
r;t1). In this case, if �� > LBr;t1 � �[RLT[NOP(
r;t1)]], then
update the incumbent solution (Q�;H�; x�) and its value �� accordingly. Else,
we have �pq > 0, and so, store the branching variable index (p; q) to be possibly
used later. Also, apply a suitable heuristic (as described above) to the optimum for
Problem RLT[NOP(
r;t1)] in order to possibly improve the incumbent solution.
Repeat Step 2 after replacing t1 by t2, and then proceed to Step 3.

Step 3. Fathoming Step. Fathom any nonimproving nodes by setting Tr+1 = Tr �

ft 2 Tr : LBr;t � ��g. If Tr+1 = ;, then stop. Otherwise, update 
r+1;t = 
r;t

and LBr+1;t = LBr;t for all t 2 Tr+1. Increment r by 1, and proceed to Step 4.

Step 4. Node Selection Step. Select an active node (r; t�), where t� 2 argminfLBr;t :
t 2 Trg is associated with the least lower bound LBr � LBr;t, over the active
nodes at stage r. Return to Step 1.

REMARK 6 (A Practical Partitioning Consideration). In Remark 5, we empha-
sized the benefit of having flow directions determined with regard to the size and
tightness of the RLT relaxation. Accordingly, at Step 1 of the foregoing procedure,
whenever an arc (p; q) 2 A2 is selected for partitioning for the first time, the
partitioning can be performed by letting Qpq 2 [0; QUt

pq ] and Qqp � 0 at one node,
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and letting Qpq = 0 and Qqp 2 [0; QUt
qp ] at the other node, hence determining the

direction of flow for the link (p; q) at each subnode. (Note that this would not affect
the theoretical convergence of the algorithm.) E

We now address the convergence of the proposed algorithm.

PROPOSITION 4 (Convergence Result). The above branch-and-bound algorithm
either terminates finitely with the incumbent solution being optimal to NOP(
), or
else, an infinite sequence of stages is generated. In the latter case, along any infinite
branch of the branch-and-bound tree, any accumulation point of the sequence
of solutions (Q;H; x) generated via the optimal linear programming solutions
obtained for the relaxations RLT[NOP(
t)] corresponding to the nodes of this
branch, solves Problem NOP(
).

Proof. The case of finite termination is clear. Hence, suppose that an infinite
sequence of stages is generated. As in Sherali and Tuncbilek (1992), along any
infinite branch of the branch-and-bound tree, we have a nested subsequence of
partitions f
r;t(r)gR indexed by r 2 R, where

t(r) � t� 2 argminf�[RLT[NOP(
r;t)]] : t 2 Trg for each r 2 R;

and where each partition at stage r 2 R corresponds to the same branching variable
(p; q), say. Moreover, this subsequence is such that the corresponding sequence
of solutions to RLT[NOP(
r;t(r))] converges to some solution ( �Q; �H; �x), and that
f
r;t(r)g ! �
 � fQ : �QL � Q � �QUg, where �Qpq = �QL

pq or �Qpq = �QU
pq holds

true. We must now show that ( �Q; �H; �x) solves Problem NOP(
).
Since �Qpq = �QL

pq or �Qpq = �QU
pq holds true as above, we have that �pq ! 0

as r ! 1, r 2 R. Hence, by (10a) and (10b), we have that �ij ! 0 as r ! 1,
r 2 R, and so, �Qij = �QL

ij or �Qij = �QU
ij 8(i; j) 2 AF as well. By Proposition 3,

then, it follows that ( �Q; �H; �x) is feasible to NOP(�
), and is therefore feasible to
NOP(
), because �
 � 
. Therefore, (c � �x+ cs � �Hs) serves as an upper bound for
NOP(
). But �[RLT[NOP(
r;t(r))]]R provides a sequence of global lower bounds
for Problem NOP(
), and this sequence of values also approaches (c � �x+ cs � �Hs).
Hence, (c � �x+ cs � �Hs) serves as both an upper and lower bound on �[NOP(
)],
and so, ( �Q; �H; �x) solves Problem NOP(
). This completes the proof. E

5. Computational Experience on a Standard Test Problem

In this section, we apply the proposed branch-and-bound algorithm to Alperovits
and Shamir’s (AS(1977)) single source test problem, and to several of its variants.
Actually, there exists some confusion in the literature in reference to this test
problem, since the original paper AS(1977) considers only a restricted set of pipe
diameters in stating the test problem, but the solution given includes a 4" pipe
diameter for one of the links (5, 7) (see Figure 1) that is not part of the printed data.
Moreover, several other authors have attempted to solve this problem by permitting
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Table 1. Test problem node data

Elevation Minimum and Maximum Supply or
Ei Pressure Bounds on Hi Demand HiL HiU

Node (m) (m) (m3=hr) (m) (m)

1 210 — 1120 N/A N/A
2 150 30, 60 �100 180 210
3 160 30, 50 �100 190 210
4 155 30, 55 �120 185 210
5 150 30, 60 �270 180 210
6 165 30, 45 �330 195 210
7 160 30, 50 �200 190 210

certain smaller pipe diameters, including a 1" diameter in particular, for links (4,
5) and (5, 7). Hence, for the sake of illustration and comparison, we solve several
variants of this problem. First, in Section 5.1, we consider the AS(1977) problem
including the 4" pipe for link (5, 7) and provide comparisons with the solution
given in AS(1977). Next, in Section 5.2, we solve the original data problem of
AS(1977) for the sake of providing another test case for which we have obtained
a global optimum. Thereafter, in Section 5.3, we solve the problem of AS(1977)
permitting the smaller diameters (1" in particular) for the links (4,5) and (5,7), and
compare our results with those obtained by Eiger et al. (1994) and Loganathan
et al. (1995). Finally, in Section 5.4, we consider the same data as in Section 5
except that the head loss constraint (1c) is taken as (1b), corresponding to rough
flow conditions.

5.1. AS (1977) TEST PROBLEM INCLUDING A 4" PIPE FOR LINK (5, 7)

Data for this problem are presented in Tables 1 and 2, and in Figure 1, along
with selected bounds on the head variables. Note that in our run, no a priori
bounds on the flows were assumed, and that the initial bounds were found using
the provably valid scheme described in Remark 2. The original test problem has
a rational exponent of 1.852 for Q in the head-loss constraints, and so, the form
of (1a) was used in (1c) with e = 1:852. The algorithm was implemented on a
SUN SPARC 10 Unix workstation, using the CPLEX callable library to solve the
linear programming subproblems. The RLT computer code was written in SUN
FORTRAN 77, while the CPLEX code provided by the CPLEX Corporation is
written in C.

For this problem instance, our branch-and-bound algorithm enumerated 57
nodes (7.5 minutes of cpu time) to optimally solve the problem. The initial (node
zero) lower bound was $210,087, and the final global lower and upper bounds were
$426,403 and $426,404, respectively. Hence, this problem has been solved for the
first time to within $1 of optimality. The solution obtained is given in Table 3. This
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Table 2. Test problem arc and cost data

Link Index Acrs Length (m) CHWN Allowable Pipe Diameters(in)

1 (1,2) 1000 130 12, 14, 16, 18, 20
2 (2,3) 1000 130 6, 8, 10, 12, 14
3 (2,4) 1000 130 10, 12, 14, 16, 18
4 (4,5), (5,4) 1000 130 3, 4, 6, 8, 10
5 (4,6), (6,4) 1000 130 10, 12, 14, 16, 18
6 (6,7), (7,6) 1000 130 8, 10, 12, 14, 16
7 (3,5), (5,3) 1000 130 6, 8, 10, 12, 14, 16
8 (5,7), (7,5) 1000 130 4, 6, 8, 10, 12

COST DATA

Pipe diameter (in) 1 2 3 4 6 8 10 12 14 16 18 20 22 24
Cost ($/m) 2 5 8 11 16 23 32 50 60 90 130 170 300 550

Table 3. Optimal solutions obtained for the test
problem of Section 5.1

Pipe (x�) Sections
Section # Having Length (m) (Q�) Flow

(i; j) of Diameter (in) (m3/hr)

1(1,2) 1000.0 18" 1120.00
2(2,3) 1000.0 10" 326.21
3(2,4) 1000.0 16" 693.79
4(4,5) 1000.0 3" 17.26
5(4,6) 12.4 16" 556.53

987.6 16"
6(6,7) 688.3 10" 226.53

311.7 12"
7(3,5) 426.2 8" 226.21

573.8 10"
8(7,5) 1000.0 4" 26.53

solution yields an improvement of 11% over the previous best solution reported
by Alperovits and Shamir having an objective value of $479,525. Moreover, the
global lower and upper bounds had a smaller than 5% gap at node 31, and a smaller
than 1% gap at node 42. Hence, for practical purposes, an earlier termination could
have been effected.

5.2. AS (1977) TEST PROBLEM EXCLUDING THE 4" PIPE FOR LINK (5,7)

In this variant of the AS(1977) test problem presented in Section 5.1, we assumed
that the permissible diameter pipes for link (5,7) were 6", 8", 10", 12", and 14"
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Fig. 1.

(in lieu of the desired 4" pipe for this link). Again, no a priori flow bounds were
assumed, and the initial bounds on the flows were computed using the method
described in Remark 2. The initial (node zero) lower bound was $215,350, and
the algorithm enumerated 57 branch-and-bound nodes in 7.1 minutes of cpu time,
terminating with exactly matching global lower and upper bounds of $436,684. The
corresponding solution obtained is given in Table 4. In this run, the gap between
the global lower and upper bounds was lesser than 5% at node 34, and was lesser
than 1% at node 46.

5.3. AS (1977) TEST PROBLEM PERMITTING SMALLER DIAMETER PIPES FOR
LINKS (4,6) AND (5,7)

We now solve a variant of the AS(1977) test problem that permits the 1" pipe
diameter for the links (4,5) and (5,7), as used by several other authors. The specific



128 HANIF D. SHERALI AND ERNEST P. SMITH

Table 4. Optimal solutions obtained for the test
problem of Section 5.2

Pipe (x�) Sections
Section # Having Length (m) (Q�) Flow

(i; j) of Diameter (in) (m3/hr)

1(1,2) 1000.0 18" 1120.00
2(2,3) 1000.0 14" 447.61
3(2,4) 214.2 14" 572.39

785.8 16"
4(4,5) 999.9 3" 9.47

0.1 4"
5(4,6) 1000.0 14" 442.92
6(6,7) 1000.0 8" 112.92
7(3,5) 49.4 10" 347.61

950.6 12"
8(5,7) 1000.0 8" 87.08

diameters we permitted were 1, 2, 3, 4, and 6 inches for both these links. The
algorithm enumerated 49 nodes in 5.7 minutes of cpu time, terminating with global
lower and upper bounds of $403,385 and $403,386, respectively. The corresponding
solution obtained is given in Table 5, and is guaranteed to be within $1 of optimality.
Again, note that theoretically justified flow bounds were derived for the overall
problem at node zero using the method of Remark 2. The effort for deriving these
bounds is only 35 cpu seconds of the total 5.7 cpu minutes, but this step is crucial
for solving the problem. For example, without this step, and using only logically
implied flow bounds, after enumerating 50 nodes, the global lower bound was only
$268,948. In this run, the initial lower bound at node zero after the flow bounds
were determined turned out to be $194,478. The gap between the global lower and
upper bounds was reduced to under 5% by node 32, and to under 1% by node
35, indicating that the procedure could have terminated earlier (using 35% lesser
effort) with a near optimal (1% optimality tolerance) solution.

In comparison, Eiger et al. (1994) use certain (unspecified) heuristically deter-
mined flow bounds, and solve this problem up to 0.4% use certain (unspecified)
heuristically determined flow bounds, and solve this problem up to 0.4% of opti-
mality in 0.9 minutes on a SUN Sparc 4 workstation. Their procedure enumerated
204 nodes, and terminated with a global lower bound of $400,743 and an upper
bound of $402,352 (compared with our global lower and upper bounds of $403,385
and $403,386, respectively). The discrepancy in their upper bound and our global
lower bound arises here because the “optimal solution” reported by Eiger et al. is
actually somewhat infeasible. On the other hand, using their heuristic procedure,
Loganathan et al. (1995) have reported the best known solution to this problem,
prior to the present work, of objective value $403,657 with no reported lower bound
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Table 5. Optimal solutions for the test problem of Section 5.3

Test Problem of Section 5.3 Test Problem of Section 5.4
Pipe (x�) Sections Pipe (x�) Sections

Section # Having Length (m) (Q�) Flow Section # Having Length (m) (Q�) Flow
(i; j) of Diameter (in) (m3/hr) (i; j) of Diameter (in) (m3/hr)

1(1,2) 1000.0 18" 1120.0 1(1,2) 1000.0 20" 1120.0
2(2,3) 795.4 10" 368.33 2(2,3) 628.6 10" 367.63

204.6 12" 371.4 12"
3(2,4) 1000.0 16" 651.67 3(2,4) 827.7 16" 652.37

172.3 18"
4(4,5) 1000.0 1" 0.98 4(4,5) 1000.0 1" 1.37
5(4,6) 310.3 14" 530.69 5(4,6) 1000.0 16" 531.00

689.7 16"
6(6,7) 11.1 8" 200.69 6(6,7) 862.3 10" 201.00

988.9 10" 137.7 12"
7(3,5) 98.5 8" 268.33 7(3,5) 18.7 8" 267.63

901.5 10" 981.3 10"
8(7,5) 1000.0 1" 0.69 8(7,5) 1000.0 1" 1.00

to assess the quality of this solution. We now know that their solution was within
0.07% of optimality.

5.4. AS(1977) TEST PROBLEM OF SECTION 5.3 UNDER ROUGH FLOW
CONDITIONS.

We now consider the same test problem as described in Section 5.3, except that
we use the integer exponent of e = 2 on the flow variables in the head loss
constraint as in (1b), corresponding to rough flow conditions. (A value of ~Qij =
100m3=hr 8(i; j) was used in (1b) for our computations.) As for the previous
cases, the procedure of Remark 2 was used to ascertain provable initial flow
bounds. This yielded an initial global lower bound on the problem of $213,531.
After enumerating 39 nodes in 9.30 minutes of cpu time, the final global lower and
upper bounds obtained upon termination were both $465,887, hence solving this
problem exactly. Table 5 gives the results obtained. In this run, the gap between
the global lower and upper bounds was less than 5% after enumerating 29 nodes,
while this gap was less than 1% after enumerating 31 nodes.

Note that the optimal cost of $465,887 is significantly larger than that for the
solution obtained in Section 5.3 ($403,386) corresponding to the rational exponent
case. In fact, the exponent of 2 corresponding to rough flow conditions in the
Hazen–Williams equation will, in general, produce more expensive solutions since
it results in greater head losses than does the exponent of 1.852 under smooth
flow conditions. The ensuing compensation between flow rates and increased pipe
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diameters in order to maintain adequate pressure heads, naturally produces a more
expensive design using the larger (integer) exponent.

6. Summary and Conclusions

In this paper, we have presented a model for the single-stage pipe network design
problem, the solution of which constitutes a principal step in an overall process
of designing a water distribution system. For this model, we have developed a
global optimization approach, and have presented some promising, preliminary
computational results on a particular test problem from the literature, reporting for
the first time true global optimal solutions for several variants of this test problem
that can be useful for future research.

In conclusion, we mention six possible major improvements that can be made
to the algorithm that has been proposed in this paper. First, we can investigate
the generation of additional classes of constraints such as the ones discussed in
Remark 3. Although not required to guarantee theoretical convergence, additional
constraints of this type can serve to tighten the relaxations generated sufficiently
to possibly yield a cost-benefit advantage.

Second, better heuristics need to be developed (or implemented) that can quickly
find good quality feasible solutions when starting from an infeasible solution
obtained via a lower bounding problem solved at a node in the branch-and-bound
tree. We only just began to investigate this area, and the heuristic we implemented
was a simple perturbation local-search scheme. However, it is encouraging that this
scheme was able to generate feasible solutions of good enough quality to quickly
narrow the lower-upper bound gap.

Third, several alternatives admissible branching strategies are evident (see Sher-
ali (1996) for example) that can also lead to theoretical convergence. Such strategies
could be investigated and tested for computational effectiveness.

Fourth, there exist several “preprocessing” range-reduction strategies that can
be used to further tighten the bounding hyperrectangle of flows at any node of
the branch-and-bound tree. Such range-reduction schemes have been successfully
employed by Thakur (1990), Hansen et al. (1991), Ryoo and Sahinidis (1994),
Sherali and Tuncbilek (1995), Shectman and Sahinidis (1994), and Lamar (1995),
among others.

Fifth, we could employ nonlinear outer approximations to the feasible region
that generate nonlinear, but convex, branch-and-bound node subproblems. In their
Reformulation-Convexification Technique, Sherali and Tuncbilek (1995) demon-
strate how such constraints can significantly tighten the relaxation, without increas-
ing the ensuing effort required to solve it.

Finally, given the size of the relaxations generated (see Remark 5), for large-
scale problems, it becomes imperative to use some suitable (deflected) subgradient
technique applied to a Lagrangian dual formulation of the lower bounding problem
RLT[NOP(
)]. (A scaling of the problem prior to applying RLT, e.g., scaling
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all flow variables onto the interval [0,1], can help in the rate of convergence in
this process.) As demonstrated in Sherali and Tuncbilek (1995), for example, this
approach can not only significantly reduce the computational burden of coping with
the size of the relaxations produced by RLT, but can also permit the handling of
simple nonlinear, convex, variable bounding constraints with negligible additional
effort.
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